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1. The Contact Noise on Thermodynamic Equilibrium Conditions 
 
1.1 Noise generation mechanism 
 

On equilibrium, two opposite and equal currents are flowing across the potential 
barrier. Those two currents are canceling each other in a statistical sense, since 
accordingly to the Second Principle of Thermodynamics the net current must be zero. 
The barrier potential difference is maintained by those two competing currents.  
If both types of charge carriers (electrons and holes) are present this statistical balance 
will be achieved for both of them, independently. In other words, there are two electron 
currents canceling each other and two hole currents canceling each other.  
This assertion is true regardless of the nature of the potential barrier. 
 
Admitting, for simplification, that there are no collisions between charge carriers and the 
atomic structure of the material, these currents across the barrier will generate a specific 
electrical noise. 
  
Considering a very general structure with a potential barrier, the respective currents 
across the barrier will be J12 and J21 (Figure 1.1). 
 

 
Figure 1.1 The currents across the potential barrier 

 
The net current across the barrier will be: 
 

2112 JJJ             (1.1) 

 
At thermodynamic equilibrium, the net macroscopic current is zero: 
 

0J            (1.2) 
 
Therefore: 
 

02112 JJJ            (1.3) 

 
where J0 is the saturation current. 
 

1                            2 J12 

J21 
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Considering the statistical canceling of currents, this in Langevin method can be written 
in a form to conserve the total electrical charge: 
 

)()()()( 221112 ttjttj           (1.4) 

 
where j12(t) and j21(t) are the instantaneous values of the respective currents and χ1(t) and 
χ2(t) are two random functions, characteristic to the transit process across the barrier. 
 
Integrating (1.4) on a time interval many times longer than the duration of the relaxation 
processes, will result: 
 

 )()()()( 221112 ttjttj       (1.5) 

 
But: 
 

1212 )( Jtj           (1.6) 

2121 )( Jtj   

 
Therefore: 
 

 )()( 21 tt           (1.7) 

 
because the equality of the averages does not have to depend on integration time (if long 
enough). 
 

In conclusion the microscopic statistical balancing principle leads to the important 
conclusion of total correlation of charge carrier fluctuations in the left and in the right 
side of the barrier (considering the barrier transit process only and neither the generation-
recombination nor capture processes).  The consequence is that it is enough to calculate 
the charge carrier density fluctuations on one side of the potential barrier, only. 
 
 The electrical fluctuations associated with those barrier crossings are due to the 
discrete nature of the transported electrical charges. The current can be considered a 
superposition of elementary Dirac pulses with a weight of q: 
 

 
j

jttqtJ )()(           (1.8) 

 
where tj is the moment of time when the respective q charge starts its transit across the 
barrier (obviously the tj moments are part of a random suite). 
 
 
As a result, each current J12 and J21 will generate the squared mean noise current (shot 
noise) given by: 
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dfJqi  22          (1.9) 

 
As a conclusion the whole structure will generate the total squared mean noise current: 
 

  dfJJqdfJqdfJqi  21122112
2 222      (1.10) 

 
At thermodynamic equilibrium: 
 

dfqJi  0

2

0 4          (1.11) 

 
The power spectral density (PSD) will be: 
 

04)(
0

qJfSJ            (1.12) 

 
therefore a white spectrum. 
 
In reality, considering the transit duration across the barrier, τt, the spectrum has the form: 
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which has the cut-off frequency: 
 

t /5.3  

 
If collisions are present during the transit (with a relaxation time of τr), the shot noise 
appears only if τr>τt and the spectrum becomes: 
 

)/exp(4)( 00 rtJ qJfS         (1.14) 

 
Here )/exp( rt   is the collision free barrier crossing probability. 

 
The normal situation is to consider frequencies far less than 1/τ and to use (1.12). 
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1.2 Barrier Contact Resistance at Zero Bias 
 
For a very convenient parameter to characterize a potential barrier we can introduce a 
barrier contact resistance at zero bias. 
This can be defined as: 
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The unit of measure is Ohm/cm2. 
 
A good contact is characterized by a minimum contact resistance. 
 
For a given barrier, Rc depends on barrier height and on charge carrier concentrations in 
both regions in contact. 
 
As a consequence one can establish an equivalent noise circuit for this structure in 
equilibrium conditions, neglecting for this moment the resistance of the regions far from 
barrier (they do not participate on contact phenomena). 
    
 
 
 
 
 
 

     2
0i    

 
 
 
 
 
 
 
Figure 1.2 Equivalent noise circuit at zero bias 
 
The squared mean noise voltage present at terminals A and A’ is going to be: 
 

 2
0

22
0 iRe c                                                                                                          (1.16) 

 
with power spectral density as: 
 

)()(
00

2 fSRfS Jce                                                                                                       (1.17) 
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In order to obtain (1.17) we used the fact that if a random signal X(t) is at the input of a 
linear system with the transfer function Y(f) and at its output is Z(t), the respective DSPs 
being SX(f) and SZ(f), then: 
 

2
)()()( fYfSfS XZ          (1.18) 

 
The linearity approximation is correct since the electrical noise has a rms value by far 
less than kT/q (even at very low temperatures), which intervene in the normal I-V contact 
equation, as we are going to see later. 
 
Therefore: 
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This is a very general relation that can be applied at every potential barrier, regardless of 
its nature. 
 
This relation is important because the squared mean noise voltage: 
 

  dffSe e )(
0

2
0  

 
is a directly measurable parameter that can give significant information about the 
potential barrier at equilibrium, without disturbing the barrier. It is worthy to mention that 
this is a true equilibrium method. Other methods normally extrapolate the non-
equilibrium values to zero bias. If hysteresis or non-linear behavior is present, those 
methods will lead to significant errors. 
 
The very general I-V characteristic of a potential barrier has the expression: 
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where k is the Boltzmann’s constant, T the absolute temperature, and n the ideality 
coefficient with values ranging from 1 to 2. 
 
Considering (1.15) and (1.20): 
 

0qJ

nkT
Rc            (1.21) 

 
and from (1.19) and (1.21): 
 

ce kTnRfS 4)(
0

          (1.22) 
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which for n=1 returns the well know Nyquist relation giving the PSD of thermal noise 
generated by a pure resistance of value Rc. 
 
This relation can be applied as well for small biases (V<< kT/q), the noise being even in 
this case generated by Rc. 
 
For 1n  the Nyquist theorem is not valid any longer (in the transit mechanism across 
the barrier the speed distribution of charge carrier is not important), and PSD is n times 
higher than the noise given by Rc. 
 
An equivalent noise resistance can be defined as: 
 

ceq RnR            (1.23) 

 
which for n=1 gives: 
 

ceq RR            (1.24) 

 
As a consequence a non-ideal barrier will have an electrical noise 6dB higher than a 
normal pure resistance of the same value. 
 
 
1.3 Barrier Capacitance Influence 
 
As it is known, in the contact region, the spatial electrical charge is modified due to the 
transit process across the barrier. This can be equivalent with a plan capacitor with the 
electrodes equaling the width of the zone with charge modification. The capacitance 
depends on contacting materials and on external applied voltage. Considering zero bias, 
this equivalent capacitance is Cc (per area unit) and the equivalent circuit will be: 
 
 
 
 
 
 
 

              2
0i  

 
 
 
 
 
Figure 1.3 Equivalent noise circuit at zero bias considering the barrier capacitance 
The squared mean noise voltage PSD at A, A’  terminals will be: 
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2
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Here )( fY is the module of the circuit transfer function given by: 
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Therefore: 
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where ccc CR   is  the time constant of the contact. 

 
Considering (1.22): 
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The noise spectrum is not white any longer. 
 
It is evident then that from noise measurements at zero bias one can obtain Rc, Cc, J0 and 
n that characterize the potential barrier. 
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2. The Contact Noise on Non-Equilibrium Conditions 
 
The most common approach to non-equilibrium noise problem is to address in detail the 
transit processes across the barrier for different particular situations. 
 
In the following, a more general method, based on thermodynamic arguments will be 
developed. 
 
Considering the Nyquist theorem and the so-called fluctuation-dissipation theorem 
(Callen) there is a interdependence between the generated noise and power dissipation in 
a certain device. This interdependence is obtained through a generalized dissipative 
function (electrical resistance in general sense). 
 
The dissipated power, P, in a pure resistor of value Re, when a voltage V is applied across 
it, is given by: 
 

eR

V
P

2

           (2.1) 

 
A small voltage fluctuation, dV, superposed over V will generate an extra absorbed 
power, dP, obtained by differentiating (2.1): 
 

dV
R
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          (2.2) 

 
It was considered that for a small variation dV, the resistance Re has a linear behavior. 
 
Therefore: 
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This very general relation can associate an equivalent noise resistance Re to any device if 
one can estimate de power variation, dP, associated to a voltage fluctuation, dV at its 
terminals. 
 
For a contact process: 
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the dissipated power will be: 
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and differentiating: 
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From (2.2) and (2.3): 
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The differential conductance of the contact is given by: 
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and the constant current conductance: 
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Considering (2.7), (2.8) and (2.9) and introducing the noise equivalent conductance as 
Ge=1/Re, results: 
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This is a very interesting relationship that shows that the thermal nose equivalent 
conductance for each contact process is the arithmetic media between the differential and 
cc conductance.   
 
In general Ge depends on J since Gcc and Gd, both depend on J (deviation from 
equilibrium). 
 
At zero bias, J=0 and then: 
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This verifies that at zero bias, Rc is the noise equivalent resistance. 
 
The squared mean noise current PSD at terminals will be: 
 

)(24)( dcceJ GGkTGkTfS         (2.12) 

 
and considering (2.8) and (2.9): 
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A simplified formula for a p-n junction considering in detail the mechanism of transport 
across the barrier was obtained as: 
 

00 2)(2)( qJJJqfSJ   which is valid just for J/J0<<1, therefore a particular case 

for (2.13). 
 
The squared mean noise voltage PSD at terminals will be: 
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It is easy to verify that at zero bias (V=0): 
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with: 
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The noise equivalent circuit becomes: 
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0i  
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Figure 2.1 Equivalent noise circuits at non-zero bias  
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Therefore: 
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In conclusion, at high currents the equivalent noise resistance is approximately 2Rd. 
 
Assuming that the pure thermal noise given by the structure is due exclusively to the 
differential resistance Rd, on can obtain: 
 

exdee RkTRkTRkTfS  444)(       (2.19) 

 
where Rex is the excess noise resistance. 
 
Considering (2.10) and (2.19): 
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The noise ratio, NR, will be given by: 
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Considering (2.11) and (2.16): 
 
if  J>>J0 then NR2         (2.22) 
    J<<J0 then NR1 
 
It is obvious the contact capacitance must be considered as well; the situation is more 
complex since it depends on bias (through the width of the spatial charge region). 
The noise equivalent circuit valid for every bias (zero bias included) but in the absence of 
1/f and pulse noise is: 
                          

                                                                                     2
re  

 
 
 

                    2i                                                                  2u  
 
 
 
 
 
 
Figure 2.2 Equivalent noise circuits of the structure with a potential barrier  
Here r(J) is the resistance of the neutral regions which are  not involved in the contact 
phenomena.  
 
The squared mean noise voltage PSD at terminals will be given by: 
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or: 
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where: 
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3. Solar Cell Characteristics and Efficiency Losses 
 

5. Metal-Semiconductor Contact Noise 
 
As is known, there are several major contributors to the series resistance of a solar cell. 
They are the bulk resistance of the semiconductor, the bulk resistance of the metallic 
contacts and interconnections and the contact resistance between the metallic contacts 
and the semiconductor. The bulk resistances are quite easily controlled. The latest 
component is the most difficult to control and therefore the noise aspects related to it can 
be quite important for a better understanding and minimizing. 
 
Let us consider a contact metal/n-type semiconductor (M/N), 
The contact potential barrier depends on the ratio between the extraction potentials of the 
metal, m and semiconductor, s. 
If m = s, the structure is in equilibrium from the very beginning (static), there is not 
potential barrier and the contact is neutral. 
If m > s, the contact is blocking and if m < s, the contact is ohmic. In practice both 
situations are important. 
 
The energy diagram of the M/N structure with a blocking contact, at thermal equilibrium 
(Schottky) can be seen in figure 5.1. 
 
 
Figure 5.1 The energy diagram of the M/N contact. 
 
It is obvious that the spatial charge region (depletion) exists in semiconductor only, the 
resistivity of the metal being orders of  magnitude smaller. 
In figure 5.1,  is the electron affinity of the semiconductor, m is the decrease of the 
barrier height produced by the image force and Vo is the contact potential difference. NF 
is the Fermi level that is the same in both (thermal equilibrium). 
 
In conclusion, the potential barrier height is: 
 

mmB            (5.1) 

 
 
Considering the so called depletion approximation (in the spatial charge region is only 
important the positive charge of the ionized donors), the width wo of the depleted region 
(potential barrier): 
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where  is the semiconductor permittivity. 
 
The net current across the M/N barrier is given by: 
 

SMMS JJJ            (5.3) 

 
where J is the overall current density and JSM current density from semiconductor to 
metal and JMS the opposite. 
 
At equilibrium J=0 and then the saturation current becomes: 
 

SMMS JJJ 0          (5.4) 

 
Generalizing for an external applied voltage V, the diode theory gives or JSM: 
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Here A* is Richardson’s effective constant, given by: 
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with m* the effective mass of electron in semiconductor. 
 
FS and FM are the Fermi-Dirac distribution functions in semiconductor and metal, 
respectively, P() and P() are the quantic transmission functions above and under the 
barrier maximum. 
 
In (5.5) the first integral represents the thermal emission of electrons above the barrier 
and the second the tunneling component. Their ratio depends on barrier height, on 
temperature and on doping concentrations. 
The same is true for JMS. 
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There are two situations 
 

i) Predominant thermoionic emission (Schottky) 
 
For low doped semiconductors, the thermoionic emission dominated the tunnel effect at 
normal temperatures. 
Admitting P()=1, one obtains the well known Richardson equation: 
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with: 
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Therefore: 
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because the thermoionic emission part of JMS does not depend on V (hence JMS=J0). 
 
As a consequence, the contact resistance will be given by (1.21): 
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The DSP from (1.22), results as: 
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It is clear that the contact noise will increase exponentially as the temperature decreases 
and as the barrier height increases. 
 
This is simple to justify: if it is more difficult to cross the barrier, the relative fluctuations 
in the number of electrons able to cross are more significant. 
 
In the same time the noise increases when A* decreases (in other words when m* 
decreases). This is less important than the contributions of B and T. 
 
As a consequence, measuring Se0(f) at zero bias and knowing A*, the barrier height 
results as: 
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where D=ln(q/4k2)=60,621 and k/q=8.575x10-5 J/CK 
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If m* is not known, hence nor A*, results: 
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

        (5.14) 

 
In consequence the relationship between lnSe0 and 1/T is linear. 
 
Having experimentally this dependence, its slope will give B and the interception A* , 
therefore m*, the effective mass of majority charge carriers in semiconductor. 
 
Defining the temperature coefficient of the contact resistance as: 
 

T

R

R
C

C 
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1
           (5.15) 

 
from (5.11) will result: 
 

T
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          (5.16) 

 
Therefore  can be obtained from (5.14) through B. 
 
As was shown, it is possible to obtain the contact capacitance per unit of barrier area, Cc 
from noise measurements. 
This is: 
 

0w
Cc


           (5.17) 

 
The barrier width w0 results and the concentration of charge carriers in semiconductor, 
as: 
 

 
2

12

c

B
D

Cq
N 




         (5.18) 

 
In conclusion, from a simple noise measurement at zero bias, one can obtain almost all 
essential parameters of the metal-semiconductor contact as: contact resistance and 
capacitance, temperature coefficient of contact resistance, saturation current, barrier 
height, barrier width for semiconductors with a doping less than 1018cm-3. 
Some semiconductor specific parameters like effective mass and impurity concentration 
can be obtained as well. 
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A very simple noise measurement apparatus with a provisional contact to the 
semiconductor wafer (Mercury, for example), with a known area, can be developed for 
those tests. 
 

6. P-N Junction (abrupt, asymmetrical)  Noise 
The abrupt and asymmetrical p-n junction is a typical junction for superficially diffused 
devices and is similar in many aspects to a metal-semiconductor contact, The diode 
theory applies. 
 
In the so-called depletion approximation, the reverse current through the junction is: 
 

dr
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qDw

n
qJ 00

2
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
       (5.19) 

 
where the first term is the due to the carrier generation in depleted region and the second 
is the diffusion current of the carriers from neutral regions. 
The generation current depends on applied reverse voltage (through w) but the diffusion 
current is independent. 
 
The direct current can be expressed as: 
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where m=1 if the diffusion current is dominant and m=2 if the recombination current is 
dominant. 
 
Therefore the contact resistance is going to be: 
 

0qJ

mkT
RC            (5.21) 

 
There are two situations: 
 

1. the case when m=1  
 
The diffusion mechanism is dominant at room temperature. 
Then: 
 

d

C
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with: 
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p
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for a n+p junction. Here pn0 is the holes concentration in the neutral n region. 
 
 
Therefore the Nyquist relation is valid and because: 
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with w the forbidden gap width, results: 
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and 
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where: 
 

*
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Therefore: 
 

 
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w
BfST e


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because at low concentrations Dp and Lp are practically constants. 
 
As a consequence, from the characteristic Se0(f)-T one can obtain w and CB 
and next B and w0 through: 
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B
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The maximum electrical field at equilibrium and the barrier capacitance will be: 
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0

max 2
w
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0
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At zero bias the diffusion capacitance is important, too: 
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which can be obtained as well since 
B

i
n

C

n
p

2

 . 

 
2. the case when m=2 

 
In this situation the recombination current is dominant and: 
 

r

C
qJ

kT
R

0

2
           (5.33) 

 
and still considering that the Nyquist theorem is valid (being thermal equilibrium) it is 
obvious that 04)(

0
qJfSJ   does not apply any longer and the generation-recombination 

noise ceases to be white. 
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6. Statistical Method of Noise Measurement 
 
The vast majority of noise processes have a Gauss-type statistical distribution of the noise 
amplitude.  
There are two situations related to the width of the frequency band of noise measurement. 
 
6.1 Broad Band Noise 
 
In this situation, the probability that in absolute value the Gauss noise will be smaller 
than an arbitrary value E(-,+) is given by: 
 








 


2
)()()( 0



EE
erfEPEPEPa       (6.1) 

 
The Gauss noise has a non-zero probability to exceed any value if one can wait enough 
long time, indeed. 
 
We used the well-known distribution function for Gauss-type processes: 
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where 2 is the variance and E0 is the mean value of the random variable. 
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The error function, erf(x) is defined by: 
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The complementary probability, that the Gauss noise will be bigger in absolute value than 
E is: 
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where erfc(x) is the complementary error function represented in figure 6.1. 
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Figure 6.1 Gauss Noise Distribution Function 
 
 
Admitting a null mean value, <E>=0, from (6.5) the probability to have a signal bigger 
than  is: 

317.0)707.0(
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
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 erfcerfcPca
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It is clear than that having experimentally the distribution curve for noise amplitude,  is 
the abscise corresponding to Pca=0.317, hence <E2>. 
If <E>0, then  <E2> results from (6.3), the abscise from Figure 6.1 becoming E-E0. 
 
Let’s consider the following noise measurement circuit. 

 
Figure 6.2 Noise Measurement Circuit by Statistical Distribution 
 
Here A is a broad band amplifier with Beff the effective noise bandwidth having the 
transfer function |Y(f)|=Y0, adjustable but constant in the band and Rin its input 
resistance, with its equivalent noise generator <eRin

2>. 
The device under test has the internal resistance R0 and its equivalent noise generator 
<e0

2>. Normally Rin>>R0 and therefore the noise is given practically by <e0
2> and by the 

amplifier self noise <eA
2>. If the noise is Gauss-type it is possible to demonstrate that 

after amplification the Gaussian character is preserved. 
ADS is the Analyzer for Statistical Distribution which gives the output as a function 
Pca(E)=Pca[|u(t)|>E], u(t) being the instantaneous voltage at the input of the analyzer. 
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From the distribution plot one can obtain the variance 0
2 and then: 
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There are two possibilities to obtain the variance 0

2. 
 

i. Operation at Pca=constant. 
 
For practical reasons one can select the value Pca=0.31 at which the abscise is t, the 
square root of the total input noise variance. It is necessary first to determine A from a 
preliminary short-circuited input measurement, in the same conditions.  
The two noise sources being un-correlated: 
 

2
0

22   At           (6.8) 

 
Therefore 0

2, <e0
2> and Seo(f) will result. 

 
 

ii. Operation at E=constant 
 
The first operation mode has the disadvantage of precise gain requiring . This can be 
avoided if operates at E=Eo=constant 
 
In this case for the amplifier own noise it is obtained Pca

a and for total noise, Pca
t  (figure 

6.3). 
 

 
Figure 6.3 The variance obtained from Statistical Distribution 
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Knowing Eo from a previous precise measurement, from tables result A and t for Pca

a 
and Pca

t . 
 
The precision is better in this case. 
 
In conclusion if there is a possibility to get experimentally the curve Pca(E) one can find  
being the abscissa corresponding to 0.317. Next <e0

2> and Seo(f) will be obtained. 
In practice the full curve is not needed. Choosing two close values, E1 and E2 with 
Pca(E1)<0.317< Pca(E2),  results from linear interpolation. 
 
One method to obtain this distribution can be based on the following equation: 
 

T

t

EP

n

i
i

ca






 1)(          (6.10) 

 
The sum represents the the total time in the interval T when the signal is higher in 
absolute value than E. 
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6.2 Narrow Band Noise 
  
It is useful to obtain the frequency dependence of Seo(f). 
If the Gaussian noise is filtered with a narrow pass-band filter with center frequency f0, 
followed by a peak detector, the resulting signal is still noise but with a Rayleigh 
distribution (figure 6.4). 
 

 
 
Figure 6.4 Rayleigh Noise Distribution Function 
 
Here: 
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As before: 
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Following the same procedure as before,  (f0) and Seo(f0) will result for Pca=0.606. 


